False positives in microRNA target prediction

Hervé Seitz

IGH du CNRS, Montpellier, France

February 12, 2016

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Introduction

The availability of genome sequences profoundly changed the practice of biology:

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

genomics yiel alse positive

Conclusion

Introduction

The availability of genome sequences profoundly changed the practice of biology:

use grep instead of Southern blotting;

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

genomics yiel alse positives

Conclusion

Introduction

The availability of genome sequences profoundly changed the practice of biology:

- use grep instead of Southern blotting;
- compare genomic sequences to find phylogenetically conserved elements.

False positives in microRNA target prediction

Introduction

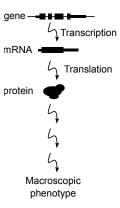
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

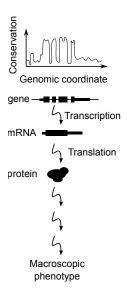
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

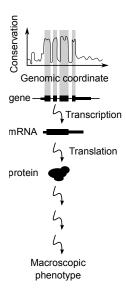
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

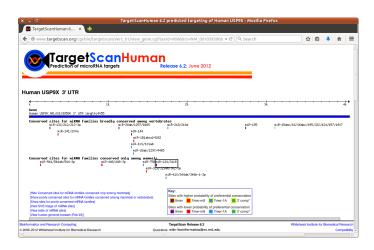
Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yielo alse positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield alse positives

Conclusion

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

Such short matches are very frequent (60 % of human coding genes seem to be targeted: Friedman *et al.*, 2009).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

Such short matches are very frequent (60 % of human coding genes seem to be targeted: Friedman *et al.*, 2009).

False positives in microRNA target prediction

itroduction

microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

Such short matches are very frequent (60 % of human coding genes seem to be targeted: Friedman *et al.*, 2009).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

Such short matches are very frequent (60 % of human coding genes seem to be targeted: Friedman *et al.*, 2009).

 \Longrightarrow miRNAs are implicated in every physiological process in animals.

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Computational programs for target prediction: look for seed matches in 3^{\prime} UTRs, select the ones that were conserved in evolution.

Such short matches are very frequent (60 % of human coding genes seem to be targeted: Friedman *et al.*, 2009).

 \implies miRNAs are implicated in every physiological process in animals.

miRNA-mediated repression is very modest (usually < 2-fold): lower than well tolerated fluctuations in gene expression (e.g., haplosufficiency). Why have these sites been conserved if they are not functional?

False positives in microRNA target prediction

Introduction

microRNA target prediction

Robustness of predicted targets

Comparative enomics yield alse positives

Conclusi

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yiel false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

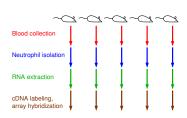
Comparative genomics yiel false positives

Conclusion

Baek *et al.*, 2008: quantification of miR-223-mediated repression in mouse neutrophils.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

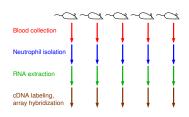
Comparative genomics yield false positives

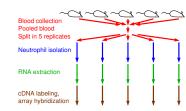
Conclusion

Baek et al., 2008: quantification of miR-223-mediated repression in mouse neutrophils.

False positives in microRNA target prediction

Introduction


microRNA target prediction


Robustness of predicted targets

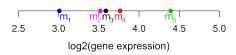
genomics yiel alse positives

Conclusion

Baek *et al.*, 2008: quantification of miR-223-mediated repression in mouse neutrophils.

False positives in microRNA target prediction

Introduction


microRNA target prediction

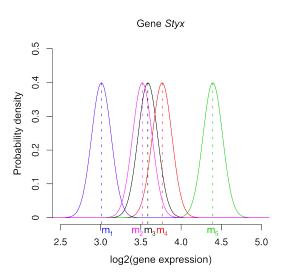
Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Gene Styx

False positives in microRNA target prediction


Introduction

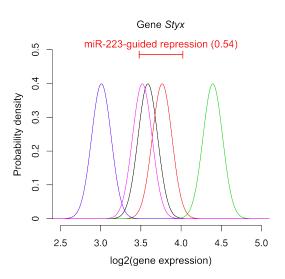
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

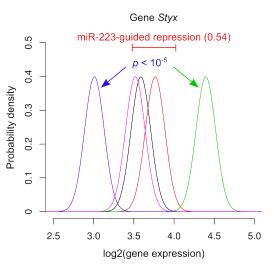
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

p: probability that the difference between two individual mice is smaller than miRNA-guided repression

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

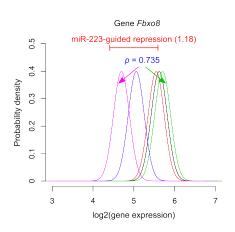
Comparative genomics yiel false positives

Conclusion

For 150 predicted targets out of 192: inter-individual fluctuations across 5 wild-type mice exceeds miRNA-mediated regulation (p-value < 0.05).

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

Lomparative genomics yield alse positives

Conclusion

For 150 predicted targets out of 192: inter-individual fluctuations across 5 wild-type mice exceeds miRNA-mediated regulation (p-value < 0.05).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

Introduction

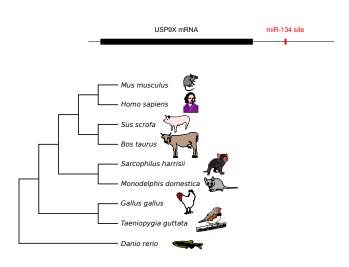
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

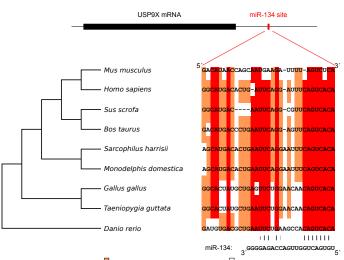
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

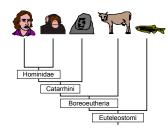
Robustness of predicted targets

Comparative genomics yield false positives

Conclus

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

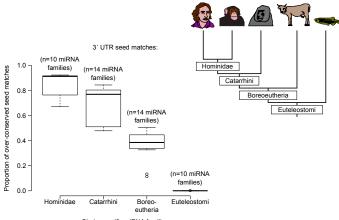
Comparative genomics yield false positives

onclusion

Comparative genomics yield false positives

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusi

Comparative genomics yield false positives

Clade-specific miRNA families

Comparison to prediction program

▶ Effect of tree architecture

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Conclusion: revisiting miRNA target definition

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

upplementary

Conclusion: revisiting miRNA target definition

Every measurable change in gene expression does not translate into a macroscopic, evolutionarily selectable phenotype.

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Conclusion: revisiting miRNA target definition

Every measurable change in gene expression does not translate into a macroscopic, evolutionarily selectable phenotype.

Among the (many !) predicted targets: finding those that are responsible for visible phenotypes.

False positives in microRNA target prediction

Introduction

microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Conclusion: revisiting "gene regulation" definition

High-throughput identification of transcription factor or RNA-binding protein targets: thousands of genes are bound, many of them are not under selective pressure to keep these binding sites.

Supplementary data

False positives in microRNA target prediction

Introduction

microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Conclusion: revisiting "gene regulation" definition

High-throughput identification of transcription factor or RNA-binding protein targets: thousands of genes are bound, many of them are not under selective pressure to keep these binding sites.

Supplementary data

Microscopic events which are neutral in evolutionary terms.

False positives in microRNA target prediction

Introduction

microRNA target prediction

Robustness of predicted target

Comparative genomics yield false positives

Conclusion

Conclusion: revisiting "gene regulation" definition

High-throughput identification of transcription factor or RNA-binding protein targets: thousands of genes are bound, many of them are not under selective pressure to keep these binding sites.

Supplementary data

Microscopic events which are neutral in evolutionary terms.

A central feature of biological systems: their robustness to external insults. Hard to reconcile with the extreme sensitivity required for fine-tuning (the "butterfly effect" has probably been counter-selected).

False positives in microRNA target prediction

Introduction

microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Acknowledgements

Anna Sergeeva:

Natalia Pinzón:

Laura Martinez:

Isabelle Busseau:

Blaise Li:

Delphine Mazé:

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Acknowledgements

Anna Sergeeva:

Natalia Pinzón:

Laura Martinez:

Isabelle Busseau:

Blaise Li:

Delphine Mazé:

Jessy Presumey and Florence Apparailly (INM, Montpellier)

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of redicted targets

Comparative genomics yield false positives

Conclusion

Acknowledgements

Anna Sergeeva:

Natalia Pinzón:

Laura Martinez:

Isabelle Busseau:

Blaise Li:

Delphine Mazé:

Jessy Presumey and Florence Apparailly (INM, Montpellier)

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of redicted targets

Comparative genomics yield false positives

Conclusion

Supplementary data

Introduction:

▶ Mechanism of target repression

Results:

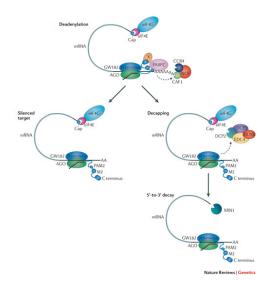
- ▶ Robustness of biological pathways
- ▶ Over-conserved sites in prediction programs
- ▶ Published evidence for genome-wide targeting
- ▶ Issues with published pseudo-targets
- ► Absolute RNA quantification results
- ► RNA-Seq statistics

Conclusion:

- Pseudo-targets for other regulators?
- Propagation of gene expression perturbation

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

omparative enomics yield Ilse positives

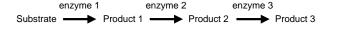
Conclusion

miRNA target repression

(adapted from Huntzinger and Izaurralde, 2011)

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target

Robustness of predicted targets

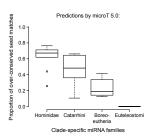
Comparative genomics yield false positives

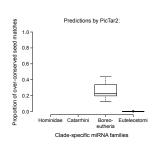
Conclusion

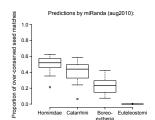
Biological robustness

False positives in microRNA target prediction

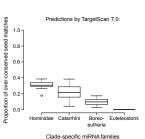
Introduction

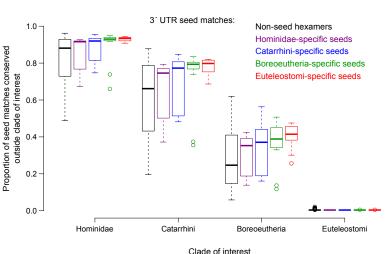

Comparative genomics microRNA target prediction


Robustness of predicted targets


Comparative genomics yield alse positives

Conclusion


Over-conservation in prediction programs


Clade-specific miRNA families

False positives in microRNA target

prediction

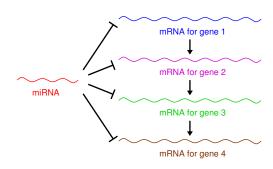
Effect of tree architecture

False positives in microRNA target prediction

Robustness of

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

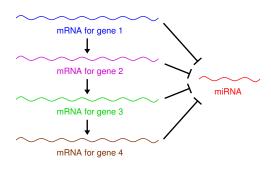
Comparative genomics yield false positives

Conclus

Targets for a given miRNA often belong to the same biological pathways.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

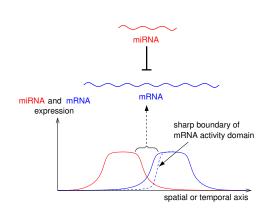
Comparative genomics yield false positives

Conclusion

Targets for a given miRNA often belong to the same biological pathways.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

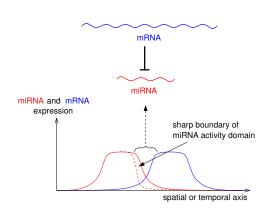
Comparative genomics yield false positives

Conclusion

Expression domains for miRNAs and their predicted targets overlap at their boundaries.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

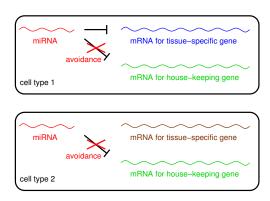
Comparative genomics yield false positives

Conclusion

Expression domains for miRNAs and their predicted targets overlap at their boundaries.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

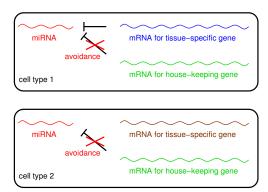
Comparative genomics yiel false positives

Conclusion

House-keeping genes are rarely predicted to be targeted.

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield alse positives

Conclus

House-keeping genes are rarely predicted to be targeted.

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield alse positives

Conclusi

A proposed pseudo-target: PTENP1, that de-repressed PTEN (Poliseno *et al.*, 2010).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

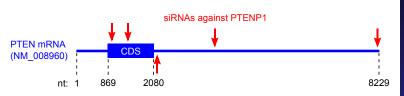
Comparative genomics yield false positives

Conclus

A proposed pseudo-target: PTENP1, that de-repressed PTEN (Poliseno *et al.*, 2010).

But PTENP1 mRNA is ≈ 100 times less abundant than the PTEN mRNA (Ebert and Sharp, 2010).

False positives in microRNA target prediction


Introduction

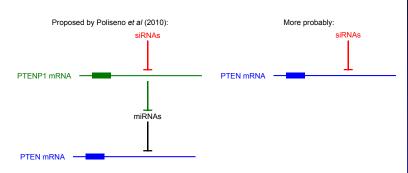
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

onclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

```
        siRNA #2 against PTENP1:
        5 UAAUAAUCAUCAUUCUGGG²

        pTEN mRNA (nt 948-961):
        3 GUUAUUA----UAA-ACCU5
        PTEN mRNA (nt 8189-8208):
        3 UUAUUACUUGGAAAAAUUA5

        siRNA #2 against PTENP1:
        5 UAAUAAUCAUCAUUCUGGC²
        3 UUUAUUACUUGGAAAAAUUA5

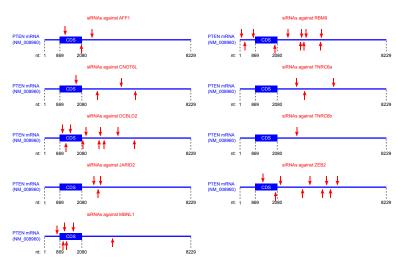
        siRNA #2 against PTENP1:
        5 UAAUAAUCAUCAUUCUGGAAAAAUUA5

        pTEN mRNA (nt 1383-1401):
        3 UUAUUAUAUGUGGG²

        3 AUUAUUAUAUGUAUGGGG5
        PTEN mRNA (nt 2192-2212):
        3 AGGAUAUUGACGUUAGACGUUG5
```

siRNA #2 against PTENP1: 5 UAAUAAUCAUCAUCUUGGG 3 UIIIII IIII PTEN mRNA (nt 3769-3782): __AUUAUUACC-----GACCU_5.

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

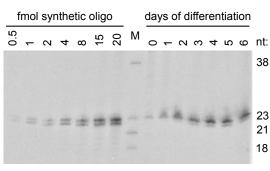
Robustness of predicted targets

Comparative genomics yield false positives

Conclus

False positives in microRNA target prediction

ntroduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

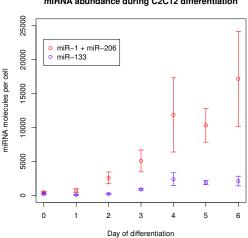
Comparative genomics yield false positives

Conclusion

(quantification of miR-1 and miR-206)

False positives in microRNA target prediction

Introduction


Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield alse positives

Conclusion

miRNA abundance during C2C12 differentiation

False positives in microRNA target prediction

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Very deep sequencing: three time points (day 0, day 3, day 6) in triplicate; each replicate: between 267 and 333 million transcriptome-matching reads.

• Statistics

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

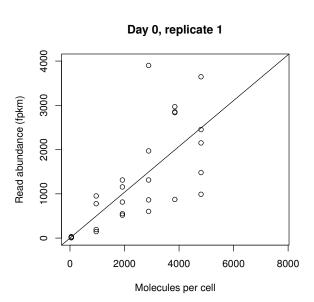
Conclusi

Very deep sequencing: three time points (day 0, day 3, day 6) in triplicate; each replicate: between 267 and 333 million transcriptome-matching reads.

• Statistics

27 synthetic spike-ins, for calibration.

False positives in microRNA target prediction


Introduction

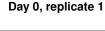
Comparative genomics microRNA target prediction

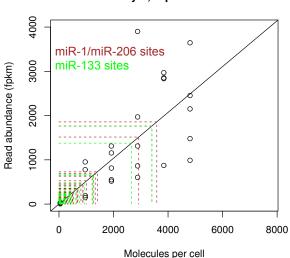
Robustness of predicted targets

Comparative genomics yield false positives

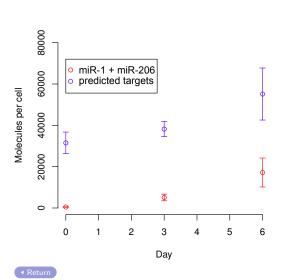
Conclusi

False positives in microRNA target prediction


Introduction


Comparative genomics microRNA target prediction

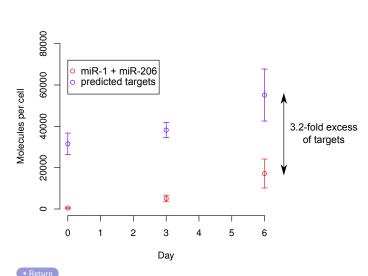
Robustness of predicted targets


Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction

False positives in microRNA target prediction


Introduction

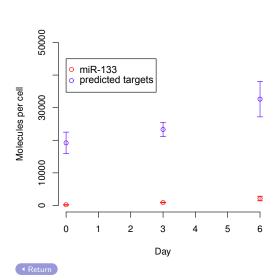
Comparative genomics microRNA target

Robustness of predicted targets

Comparative genomics yield alse positives

Conclusion

False positives in microRNA target prediction


Introduction

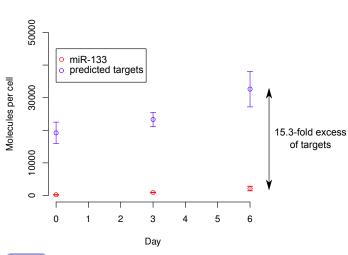
Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

False positives in microRNA target prediction


Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield alse positives

Conclusion

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target

Robustness of predicted targets

Comparative genomics yield false positives

Conclusion

Supplementary data

◆ Return

Deep-sequencing statistics

Number of reads per kb (median transcript, excluding spike-ins):

Day 0	Replicate 1	159.26
	Replicate 2	140.53
	Replicate 3	150.03
Day 3	Replicate 1	213.09
	Replicate 2	167.77
	Replicate 3	198.48
Day 6	Replicate 1	223.57
	Replicate 2	243.86
	Replicate 3	220.23

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yielo alse positives

Conclus

Pseudo-targets for other regulators?

▶ Transcription factors: experimentally identified binding sites are poorly conserved among vertebrates (Odom *et al.*, 2007 and Schmidt *et al.*, 2010).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

comparative enomics yield

Conclusion

Pseudo-targets for other regulators?

- Transcription factors: experimentally identified binding sites are poorly conserved among vertebrates (Odom et al., 2007 and Schmidt et al., 2010).
- ▶ RNA-binding proteins are poorly specific (thousands of experimentally validated targets for each analyzed protein: Hafner *et al.*, 2010; Lebedeva *et al.*, 2011 and Hafner *et al.*, 2013).

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclusi

Pseudo-targets for other regulators?

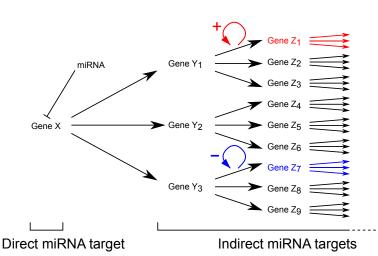
- Transcription factors: experimentally identified binding sites are poorly conserved among vertebrates (Odom et al., 2007 and Schmidt et al., 2010).
- ▶ RNA-binding proteins are poorly specific (thousands of experimentally validated targets for each analyzed protein: Hafner *et al.*, 2010; Lebedeva *et al.*, 2011 and Hafner *et al.*, 2013).

Real molecular events, which are neutral in evolutionary terms?

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction


Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Propagation of gene expression perturbation

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Propagation of gene expression perturbation

False positives in microRNA target prediction

Introduction

Comparative genomics microRNA target prediction

Robustness of predicted targets

Comparative genomics yield false positives

Conclus

Supplementary data

(in collaboration with H. Royo and J. Turner, MRC, London)