A new perspective on miRNA-mediated regulation

Hervé Seitz

LBME (CNRS and Université Paul Sabatier, Toulouse, France)

June 15, 2011

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

General.

data

microRNAs repress specific target mRNAs (recognized by sequence complementarity).

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generaliz

microRNAs repress specific target mRNAs (recognized by sequence complementarity).

Computational programs search for microRNA complementary sites that have been conserved in evolution. A new perspective on miRNA-mediated regulation

Introduction
Three paradoxes

hypothesis

Generaliz

microRNAs repress specific target mRNAs (recognized by sequence complementarity).

- Computational programs search for microRNA complementary sites that have been conserved in evolution.
- ▶ A huge number of mRNAs exhibit such conserved sites (e.g., ≥ 60% of human coding genes: Friedman et al., 2009).

A new perspective on miRNA-mediated regulation

Three paradoxes
Alternative
hypothesis

Introduction

Generalization

ouppiementary lata

microRNAs repress specific target mRNAs (recognized by sequence complementarity).

- Computational programs search for microRNA complementary sites that have been conserved in evolution.
- ▶ A huge number of mRNAs exhibit such conserved sites (e.g., ≥ 60% of human coding genes: Friedman et al., 2009).

→ microRNAs control every physiological process by fine-tuning some of its components. A new perspective on miRNA-mediated regulation

Introduction

Inree paradox

hypothesis Generalization

data

First paradox

Computational programs identify tens or hundreds of targets for each miRNA, yet genetic studies identify a single one.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

nypothesis

data

First paradox

Computational programs identify tens or hundreds of targets for each miRNA, yet genetic studies identify a single one.

	Genetic	experiments	Number of computationally	
miRNA			predicted targets	
	Target	Reference	TargetScan	PicTar
worm let-7	lin-41	Slack et al.	65	89
		(2000)		
worm lin-4	lin-14	Ambros	22	32
		(1989)		
fly let-7	abrupt	Ambros and	50	68
		Chen (2007)		

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

nypothesis

Generalization

Second paradox

MiRNA-mediated repression is much smaller than intrinsic, well-tolerated variations in gene expression.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generaliza

Third paradox

Computationnally-identified miRNA targets are poorly conserved.

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalizati

Third paradox

Computationnally-identified miRNA targets are poorly conserved.

(Data from Chen and Rajewsky, 2006)

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generaliz

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

► First paradox:

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets. A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

data

- First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets.
- Second paradox:

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

- First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets.
- ▶ Second paradox: pseudo-targets are not sensitive to a 1.1 – 2-fold change, real targets are.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxe

Alternative hypothesis

Generalization

- First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets.
- ▶ Second paradox: pseudo-targets are not sensitive to a 1.1 – 2-fold change, real targets are.
- ► Third paradox:

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

- First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets.
- ▶ Second paradox: pseudo-targets are not sensitive to a 1.1 – 2-fold change, real targets are.
- ► Third paradox: set of pseudo-targets can fluctuate during evolution (universally-conserved targets would be enriched in real targets).

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

- First paradox: computational searches find both pseudo-targets and real targets, genetics find only the real targets.
- ▶ Second paradox: pseudo-targets are not sensitive to a 1.1 – 2-fold change, real targets are.
- ► Third paradox: set of pseudo-targets can fluctuate during evolution (universally-conserved targets would be enriched in real targets).

Prediction: only dose-sensitive genes can be targeted by miRNAs.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

A new perspective on miRNA-mediated regulation

-			Introduction
	Gene	Target for	Three paradoxes
	worm <i>lin-14</i>	lin-4	Alternative hypothesis
-	worm lin-41	let-7	Generalization Supplementary
	fly <i>abrupt</i>	let-7	data supplementary

Gene	Target for	Indication for dosage sensitivity	Introduction Three paradoxes
worm lin-14	lin-4	Formation of lateral alae at L4 molt	·
		is sensitive to lin-14 dosage	Alternative hypothesis
worm lin-41	let-7	Worm viability is	Generalization
		sensitive to lin-41 dosage	Supplementary
fly abrupt	let-7	Dendritic branching in multiple	data
		dendritic sensory neurons is sensitive to	

abrupt dosage

A new perspective on miRNA-mediated regulation

A new perspective on miRNA-mediated regulation

			Introduction
Gene	Target for	Indication for dosage sensitivity	Three parade
worm <i>lin-14</i>	lin-4	Formation of lateral alae at L4 molt	Alternative
		is sensitive to lin-14 dosage	hypothesis
worm <i>lin-41</i>	let-7	Worm viability is	Generalization
		sensitive to lin-41 dosage	Supplementa
fly abrupt	let-7	Dendritic branching in multiple	data
		dendritic sensory neurons is sensitive to	
		<i>abrupt</i> dosage	
worm cog-1	lsy-6	Left/right ASE neuron asymmetry	-
		is sensitive to cog-1 dosage	
fly <i>hid</i>	bantam	Survival of eye bristle cells	
		is sensitive to hid dosage	
Mammalian	miR-1 and	Muscle mass and racing performance	-
myostatin	<i>miR-206</i> in	correlate with gene dosage in dogs	
	mutant sheep		
mouse Ptbp1	miR-124	Alternative splicing is sensitive	
		to Ptbp1 expression level	

An mRNA that is repressed by a miRNA.

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

An mRNA that is repressed enough by a miRNA.

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalizatio

An mRNA that is repressed enough by a miRNA.

A "systems biology" conception of miRNA-target interactions: functional output depends on complex interaction networks.

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generaliz

An mRNA that is repressed enough by a miRNA.

A "systems biology" conception of miRNA-target interactions: functional output depends on complex interaction networks.

Integrating expression information of hundreds of genes on a single regulator.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generaliz

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

The pseudo-target theory could apply to every type of regulator/target interaction.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

ypothesis

 ${\sf Generalization}$

The pseudo-target theory could apply to every type of regulator/target interaction.

Experimentally-identified binding sites for transcription factors are poorly conserved (Odom *et al.*, 2007; Schmidt *et al.*, 2010): do the targets really care?

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

hypothesis

Generalization

The pseudo-target theory could apply to every type of regulator/target interaction.

Experimentally-identified binding sites for transcription factors are poorly conserved (Odom *et al.*, 2007; Schmidt *et al.*, 2010): do the targets really care?

Experimentally-identified RNA targets for RNA-binding proteins: poor specificity (Hafner *et al.*, 2010): do the targets really care?

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

hypothesis

Generalization

data

The pseudo-target theory could apply to every type of regulator/target interaction.

Experimentally-identified binding sites for transcription factors are poorly conserved (Odom *et al.*, 2007; Schmidt *et al.*, 2010): do the targets really care?

Experimentally-identified RNA targets for RNA-binding proteins: poor specificity (Hafner *et al.*, 2010): do the targets really care? A pseudo-target for SR proteins: the MALAT1 RNA (Tripathi *et al.*, 2010).

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

hypothesis Generalization

C.....lamantam

The pseudo-target theory could apply to every type of regulator/target interaction.

Experimentally-identified binding sites for transcription factors are poorly conserved (Odom *et al.*, 2007; Schmidt *et al.*, 2010): do the targets really care?

Experimentally-identified RNA targets for RNA-binding proteins: poor specificity (Hafner *et al.*, 2010): do the targets really care? A pseudo-target for SR proteins: the MALAT1 RNA (Tripathi *et al.*, 2010).

Regulator/target relationships are not unidirectional.

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

hypothesis Generalization

Supplementary

Acknowledgements

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

Acknowledgements

LBME du CNRS (Toulouse, France): Nicole Joseph, Andalib Farhat and Anna Sergeeva A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

 ${\sf Generalization}$

data

Acknowledgements

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

Supplementary data

- ▶ Robustness of biological pathways
- Additional support to the hypothesis
- ▶ Revisiting known properties of microRNA target

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

Second paradox

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalization

Second paradox

A new perspective on

miRNA-mediated regulation

ntroduction

Three paradoxes

viternative ypothesis

Generalization

A new perspective on miRNA-mediated regulation

Introduction

Three paradoxes

Alternative hypothesis

Generalization

In Bacteria: regulation of regulatory RNAs by pseudo-targets (Overgaard *et al.*, 2009; Figueroa-Bossi *et al.*, 2009).

A new perspective on

miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative Iypothesis

Generaliza

In Bacteria: regulation of regulatory RNAs by pseudo-targets (Overgaard *et al.*, 2009; Figueroa-Bossi *et al.*, 2009).

In Animals: mRNAs compete for microRNA and siRNA binding (Arvey *et al.*, 2010).

A new perspective on

miRNA-mediated regulation

Introduction

Three paradoxes

ypothesis

Generaliz

In Bacteria: regulation of regulatory RNAs by pseudo-targets (Overgaard *et al.*, 2009; Figueroa-Bossi *et al.*, 2009).

In Animals: mRNAs compete for microRNA and siRNA binding (Arvey *et al.*, 2010).

In humans: a pseudogene of the PTEN gene titrates microRNAs, relieving PTEN silencing (Poliseno *et al.*, 2010).

A new perspective on

miRNA-mediated regulation

ntroduction

Three paradoxes

hypothesis

Generaliz

In Bacteria: regulation of regulatory RNAs by pseudo-targets (Overgaard *et al.*, 2009; Figueroa-Bossi *et al.*, 2009).

In Animals: mRNAs compete for microRNA and siRNA binding (Arvey *et al.*, 2010).

In humans: a pseudogene of the PTEN gene titrates microRNAs, relieving PTEN silencing (Poliseno *et al.*, 2010).

In Arabidopsis thaliana: microRNA-mediated repression of some targets is buffered at the macroscopic level (Allen et al., 2010).

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

hypothesis

Generalization

Revisiting known properties of microRNA targets

mRNA for gene 1

mRNA for gene 1

mRNA for gene 1

mRNA for gene 2

mRNA for gene 2

mRNA for gene 3

mRNA for gene 3

mRNA for gene 4

mRNA for gene 4

A new perspective on miRNA-mediated regulation

ntroduction

Three paradoxes

Alternative hypothesis

Generalizati

Revisiting known properties of microRNA targets

A new perspective on miRNA-mediated regulation

ntroduction

i nree paradoxes

Alternative hypothesis

Generaliz

Revisiting known properties of microRNA targets

miRNA

cell type 1

A new perspective on miRNA-mediated regulation

troduction

Three paradoxes

Constitution

Generalization

Supplementary data

mRNA for tissue-specific gene

mRNA for house-keeping gene