The number of physiologically important microRNA targets has been vastly overestimated

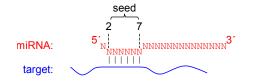
Hervé Seitz

October 18, 2024

Slideshow accessible for download at: http://www.igh.cnrs.fr/equip/Seitz/EMB024.pdf Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction


Binding site evolution after niRNA loss

Strategy

Observed losses

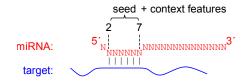
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losses

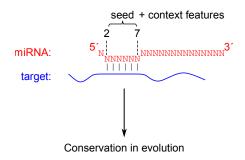
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction


Binding site evolution after miRNA loss

Strategy

Observed losses

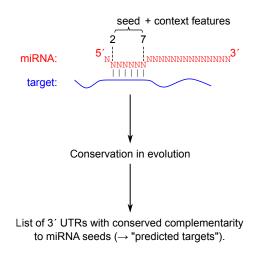
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losses

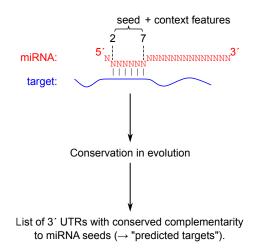
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Even high-throughput identification needs to assess conservation.

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

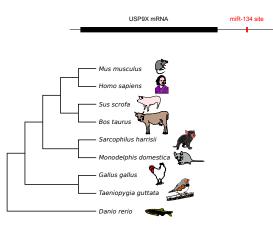
Conclusion

Some 3^{\prime} UTR seed matches are conserved for miRNA-independent reasons.

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction


Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

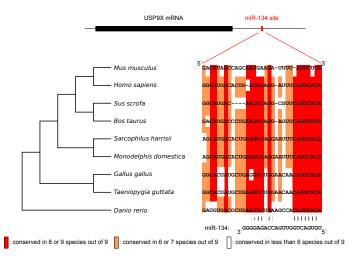
Overestimated number of miRNA targets

niRNA target dentification

False positives in target prediction

Binding site volution after niRNA loss

Strategy


Observed losses

Evolution of seed match count after loss

Conclusion

Supplementary data

(Pinzón et al., 2017)

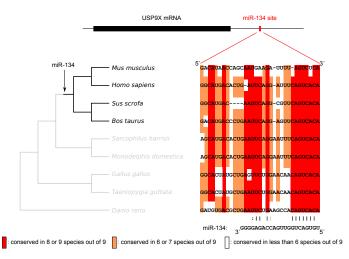
Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy


Observed losses

Evolution of seed match count after loss

Conclusion

Supplementary data

(Pinzón et al., 2017)

Overestimated number of miRNA targets

miRNA target dentification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

count after loss

Conclusion

Supplementary data

(Pinzón et al., 2017)

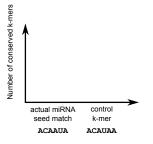
Measuring miRNA-independent conservation with control *k*-mers (with same G/C content, dinucleotide composition, ...; Friedman *et al.*, 2009).

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

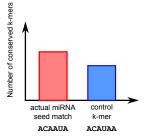
Measuring miRNA-independent conservation with control *k*-mers (with same G/C content, dinucleotide composition, ...; Friedman *et al.*, 2009).

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

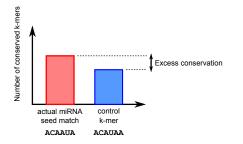
Measuring miRNA-independent conservation with control *k*-mers (with same G/C content, dinucleotide composition, ...; Friedman *et al.*, 2009).

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Measuring miRNA-independent conservation with control *k*-mers (with same G/C content, dinucleotide composition, ...; Friedman *et al.*, 2009).

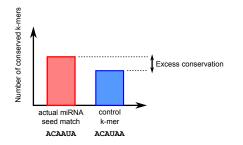
Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after niRNA loss

Strategy


Observed losses

Evolution of seed match count after loss

Conclusion

Measuring miRNA-independent conservation with control *k*-mers (with same G/C content, dinucleotide composition, ...; Friedman *et al.*, 2009).

 \rightarrow not submitted to the same selective pressure than actual miRNA seed matches (*e.g.*, protein binding sites).

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Binding site evolution after miRNA loss

Overestimated number of miRNA targets

niRNA target dentification

False positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Binding site evolution after miRNA loss

After loss of a *complete* miRNA family (*), how long do its seed matches persist ?

(*): family: all the miRNAs sharing the same seed sequence

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Binding site evolution after miRNA loss

After loss of a *complete* miRNA family (*), how long do its seed matches persist ?

(*): family: all the miRNAs sharing the same seed sequence

We need to be lucky: loss of complete miRNA families!

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

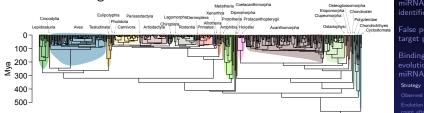
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

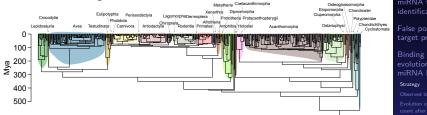

Binding site evolution after niRNA loss

Strategy

Observed losses Evolution of seed match count after loss

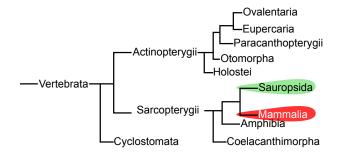
Conclusion

522 vertebrate genomes:



Conclusion

Supplementary data


Overestimated number of miRNA targets

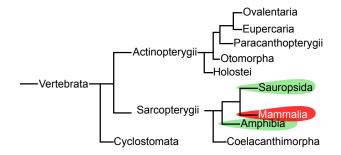
522 vertebrate genomes:

848 best annotated vertebrate miRNA families.

Overestimated number of miRNA targets

Overestimated number of miRNA targets

niRNA target dentification


alse positives in arget prediction

Binding site evolution after miRNA loss

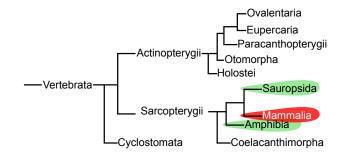
Strategy

Observed losses Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target dentification


alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

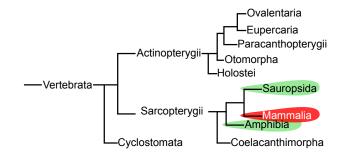
Observed losses Evolution of seed match count after loss

Conclusion

More convincing if many species in clade of loss.

Overestimated number of miRNA targets

niRNA target dentification


alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed match count after loss

Conclusion

More convincing if many species in clade of loss. \geq 5 species in clade of loss; presence in sister clade + 3 closest cousin clades.

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed match count after loss

Conclusion

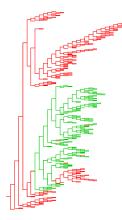
Overestimated number of miRNA targets

miRNA target dentification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy


Observed losses

Evolution of seed match count after loss

Conclusion

Family	Clade of loss	Family	Clade of loss	r i
miR-509	Cervidae+Bovidae	miR-451a	Paralichthyidae+Pleuronectidae	1
miR-541	Feliformia	miR-509	Yangochiroptera	F
miR-224	Mustelidae	miR-31	Protacanthopterygii	t
miR-338	Lagomorpha	miR-31	Lophiiformes+Tetraodontiformes	
miR-338	Syngnathidae	miR-885	Myomorpha	F
miR-460	Serpentes	miR-296-5p	Lagomorpha	e
miR-660	Murinae	miR-296-5p	Canidae	r
miR-880	Deomyinae+Gerbilinae	miR-412	Lagomorpha	
miR-452	Mustelidae	miR-889	Muridae+Cricetidae	
miR-456	Balistidae+Tetraodontidae	miR-889	Bovinae	
miR-296-3p	Lagomorpha	miR-458	Theria	
miR-2188	Eutheria	miR-374	Yangochiroptera	
miR-2114	Phocidae	miR-513b	Bos	(
miR-656	Myomorpha	miR-653	Yangochiroptera	
miR-654	Delphinoida	miR-1662	Endoglyptodonta	5
miR-460b	Mammalia	miR-297p	Pinnipedia+Musteloidea	¢
miR-460b	Serpentes	miR-2131	Psittaciformes	
miR-676	Cervidae+Bovidae	miR-122b	Paralichthyidae+Pleuronectidae	
miR-676	Feloidea	miR-325-3p	Bovidae	
miR-187	Serpentes	miR-599	Batrachia	
miR-769	Yangochiroptera	miR-599	Corvides+Passerides	
miR-769	Whippomorpha	miR-599	Galloanserae	
miR-1185	Yangochiroptera			

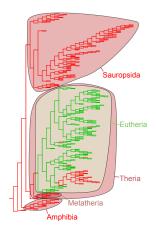
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

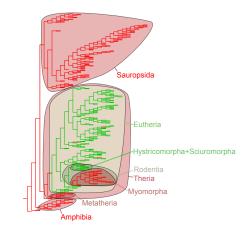
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

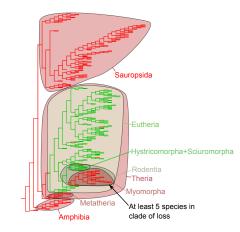
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

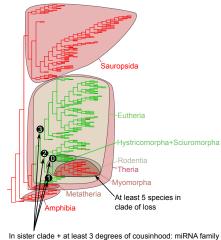
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

miR-656 family:

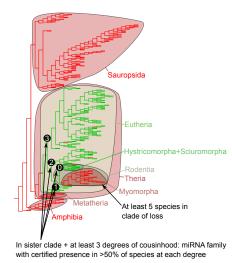
with certified presence in >50% of species at each degree

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

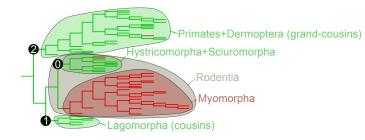
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

niRNA target dentification

False positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losse

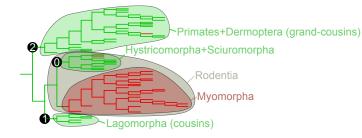
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

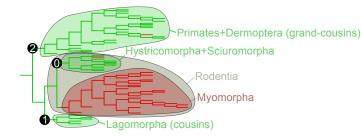
Conclusion

PhyloP score: measures probability of selective conservation of seed match vs. rest of UTR.

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

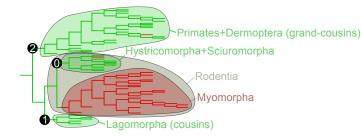
Conclusion

PhyloP score: measures probability of selective conservation of seed match vs. rest of UTR in a clade vs. rest of tree.

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

PhyloP score: measures probability of selective conservation of seed match vs. rest of UTR in a clade vs. rest of tree.

 \longrightarrow Selects seed matches with selective conservation in rodents, then compare their conservation in rodent subclades (clade of loss vs. sister clade).

Overestimated number of miRNA targets

niRNA target dentification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

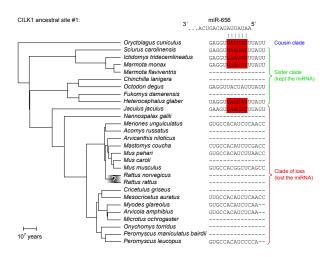
After miR-656 family loss:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss


Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

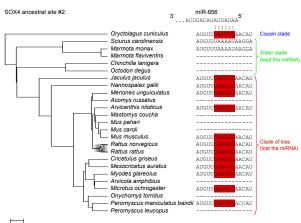
After miR-656 family loss:

Overestimated number of miRNA targets

niRNA target dentification

False positives in target prediction

Binding site evolution after miRNA loss


Strategy

Observed losse

Evolution of seed match count after loss

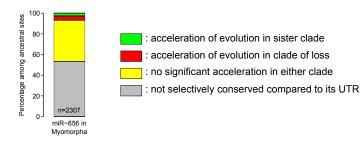
Conclusion

After miR-656 family loss:

Overestimated number of miRNA targets

niRNA target dentification

False positives in target prediction


Binding site evolution after miRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

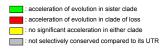
Conclusion

Overestimated number of miRNA targets

miRNA target dentification

alse positives in arget prediction

Binding site volution after niRNA loss


Strategy

Observed losse

Evolution of seed match count after loss

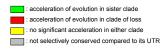
Conclusion

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losse

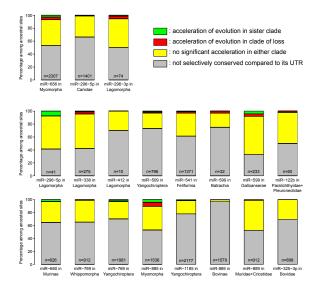
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction


Binding site evolution after miRNA loss

Strategy

Observed losse

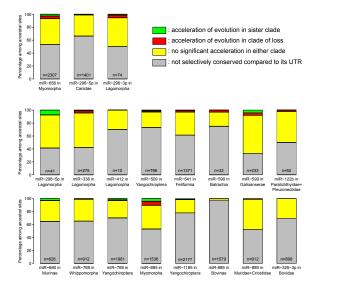
Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

miRNA target dentification

alse positives in arget prediction


Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

Most of these sites: conserved independently of the miRNA.

Overestimated number of miRNA targets

miRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

High-throughput experimental target identification captures many false positives...

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

High-throughput experimental target identification captures many false positives...

... but comparative genomics too!

Overestimated number of miRNA targets

miRNA target identification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

High-throughput experimental target identification captures many false positives...

... but comparative genomics too!

Improvement: identification of miRNA-independent conservation of binding sites.

Overestimated number of miRNA targets

miRNA target dentification

False positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

High-throughput experimental target identification captures many false positives...

... but comparative genomics too!

Improvement: identification of miRNA-independent conservation of binding sites.

On the analyzed examples: most conserved seed matches are not conserved because of the miRNA!

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed mate

Conclusion

High-throughput experimental target identification captures many false positives...

... but comparative genomics too!

Improvement: identification of miRNA-independent conservation of binding sites.

On the analyzed examples: most conserved seed matches are not conserved because of the miRNA!

 \longrightarrow A large part of the miRNA literature probably needs a cleanup.

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed match

Conclusion

High-throughput experimental target identification captures many false positives...

... but comparative genomics too!

Improvement: identification of miRNA-independent conservation of binding sites.

On the analyzed examples: most conserved seed matches are not conserved because of the miRNA!

 \longrightarrow A large part of the miRNA literature probably needs a cleanup.

May be generalized to other regulators (transcription factors, RNA-binding proteins; Seitz, 2024).

Overestimated number of miRNA targets

miRNA target identification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed match count after loss

Conclusion

Acknowledgments

Current members: Isabelle Busseau Estelle Rebecq

Élisabeth Houbron Rémy Rodriguez Pauline De Sousa

Former members: Sophie Mockly Natalia Pinzón Laura Martinez

Germain Busto Blaise Li Anna Sergeeva Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Conclusion

Acknowledgments

Current members: Isabelle Busseau Estelle Rebecq

Élisabeth Houbron Rémy Rodriguez Pauline De Sousa

Former members: Sophie Mockly

Natalia Pinzón Laura Martinez Germain Busto Blaise Li Anna Sergeeva

Hiring for bioinfo projects!

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Acknowledgments

Current members: Isabelle Busseau Estelle Rebecq

Élisabeth Houbron Rémy Rodriguez Pauline De Sousa

Former members: Sophie Mockly Natalia Pinzón Laura Martinez

Germain Busto Blaise Li Anna Sergeeva

Hiring for bioinfo projects!

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses Evolution of seed match

Conclusion

Supplementary data

mir-656 orthologous loci in mammals

Missing statistics

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss

Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

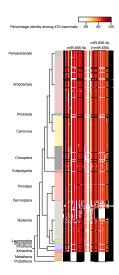
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after miRNA loss


Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

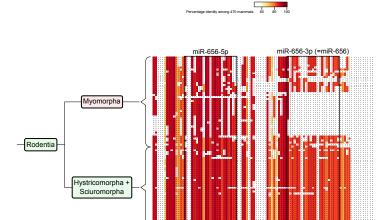
miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site evolution after niRNA loss


Strategy

Observed losse

Evolution of seed match count after loss

Conclusion

miR-656 family:

Overestimated number of miRNA targets

niRNA target dentification

alse positives in arget prediction

Binding site volution after niRNA loss

Strategy

Observed losses

Evolution of seed match count after loss

Conclusion

Family	Seed	Clade of loss	Reason
miR-451a	AACCGU	Paralichthyidae+Pleuronectidae	<10 ancestral sites
miR-224	AAGUCA	Mustelidae	Under-studied sister clade
miR-338	ACAAUA	Syngnathidae	<10 ancestral sites
miR-460	ACAGCG	Serpentes	<10 ancestral sites
miR-880	ACUCCA	Deomyinae+Gerbilinae	Under-studied sister clade
miR-452	ACUGUU	Mustelidae	Under-studied sister clade
miR-456	AGGCUG	Balistidae+Tetraodontidae	Under-studied sister clade
miR-2188	AGGUCC	Eutheria	<10 ancestral sites
miR-2114	AGUCCC	Phocidae	Under-studied sister clade
miR-654	AUGUCU	Delphinoida	Under-studied sister clade
miR-460b	CCUCAU	Mammalia	<10 ancestral sites
miR-460b	CCUCAU	Serpentes	<10 ancestral sites
miR-676	CGUCCU	Cervidae+Bovidae	Under-studied sister clade
miR-676	CGUCCU	Feloidea	<10 ancestral sites
miR-187	CGUGUC	Serpentes	<10 ancestral sites
miR-509	GAUUGA	Cervidae+Bovidae	Under-studied sister clade
miR-31	GGCAAG	Protacanthopterygii	<10 ancestral sites
miR-31	GGCAAG	Lophiiformes+Tetraodontiformes	<10 ancestral sites
miR-458	UAGCUC	Theria	<10 ancestral sites
miR-374	UAUAAU	Yangochiroptera	In progress
miR-513b	UCACAA	Bos	<10 ancestral sites
miR-653	UGAAAC	Yangochiroptera	In progress
miR-1662	UGACAU	Endoglyptodonta	Under-studied sister clade
miR-297p	UGUAUG	Pinnipedia+Musteloidea	Under-studied sister clade
miR-2131	UGUUAC	Psittaciformes	Under-studied sister clade
miR-599	UUGAUA	Corvides+Passerides	Under-studied sister clade

Overestimated number of miRNA targets

miRNA target dentification

False positives in target prediction

Binding site evolution after miRNA loss

Strategy

Observed losses

count after loss

Conclusion